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DETECTION OF OUTLIERS IN WHEAT PRODUCTION OF

MYANMAR (1950-2006)
Mya Thandar'

Abstract

Outliers are commonplace in statistical data analysis. Noting that the
effects of outliers in a time series could be serious, the presence of the outliers
has significant influence on the analysis of the series. Direct use of
conventional statistical time series analysis may occasionally ignore the fact
that the observed time series no longer covers the time period with the same
condition. Consequently, it leads to use of the inadequate model and to the
biased estimates of the parameters in time series analysis. Therefore, the
consideration of outliers in a time series is a crucial aspect of time series
analysis. This study reviews outliers in a time series, including definitions and
types of outliers, ARIMA models for time series with outliers, as well as
likelihood ratio test for detection of outliers in a time series. In addition, the
detection and identification of outliers in wheat production series of Myanmar
is also empirically investigated as an illustration in this study.

Key wards: outlier, ARIMA models, likelihood ratio test.

ks Introduction

A time series is an ordered sequence of observations on a variable of interest collected usually
in time, particularly in terms of some equally spaced time intervals. Time series exist in several
fields such as agriculture, business, economics, engineering, geophysics, medical studies,
meteorology, natural sciences and social sciences. An important feature of a time series is that,
typically, adjacent observations are dependent or correlated. Because of dependence structure,
statistical procedure and techniques that rely on independence assumptions are not applicable,
and different statistical techniques are needed for a time series analysis at the presence of
outliers.

Economic time series are sometimes more or less significantly influenced by certain external
and special events or circumstances such as political or economic policy changes, strikes,
outbreaks of war, monetary crises, implementation of a new rule and regulation, advertising
promotions, and similar events. These events are referred to as intervention events and they
usually bring outliers into the time series data.

Time series data with outlying observations needs to be analyzed using statistical outlier
analysis. The effect of the change due to the unusual event and it’s position in time series
should be analyzed in order to provide the most suitable and reliable forecasts for the future
values. Thus, the investigation into the presence of outliers, identification of outliers,
assessment of their effects and the remedial measures to accommodate the outliers become a
crucial aspect of analyzing many economic time series and have gained much important
momentum in recent years.

2.  Types of Outliers
Outliers in a time series data set can rise for different reasons. There are two types of
anomalies, namely gross errors and outliers. Gross errors are faulty observations, for example
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measurement, reading and typing errors. Identifying these is the least controversial aspect of
outlier detection, since gross errors should naturally be identified and corrected whenever
possible. If an observation treated as a potential outlier cannot be shown to be a gross error, it
has to be considered as an outlier.

Outliers can take different forms in time series. The formal definition and classification of
outliers in time series context were first proposed by Fox (1972). He proposed a classification
of time series outliers as type I and type II, based on an autoregressive model. These two types
have later been renamed as additive and innovational outliers, and are usually abbreviated as
AO and IO, respectively. AO affects single observation, and there is no "carry-over" effect. IO
affects the observations from the outlier position onwards, and it has "carry-over" effect as well
as decays.

3. ARIMA Models for Time Series with Outliers
In the outlier literature (e.g. Tsay, 1986; Chen and Liu, 1993), a time series with outliers is

modeled as ARIMA plus intervention. The basic reference to ARIMA model is Box and
Jenkins (1976).

The parametric approach to modeling the time series in terms of linear difference equations has
led to an important class of models, namely autoregressive integrated moving average model
with order p, d and g, popularly known as ARIMA (p, d, q) (Box and Jenkins, 1976).

If Z, is an observed time series, then the ARIMA (p, d, q) model is given by

$(B) (1-B)' Z:= 6(B) M

where 6 (B)=1-¢ B - B> -...-¢, B and 6 (B)=1-6;B - 0,B* - ... -6, Bare
polynomials of degree pand q in B, ¢;,i=1,2,...,pand 6 j=1,2,..., q are the
. autoregressive and moving average parameters of the time series respectively and B is the
backward shift operator, that is, B’ Z, = Z; . In the above model, a; is the white noise or error

series with mean zero, and variance o, is referred to as the error variance.

It is assumed that the series (1-B)® Z, is stationary, that is, the roots of ¢ (B) = 0 lie outside the
unit circle, and invertible, that is, the roots of 8 (B) = 0 lie outside the unit circle. When d =0,
Equation (1) represents a stationary process ARMA (p, q), given by

0B)Z=0 Ba. @
The ARMA (p, q) process Z; can also be represented as a random shock model of the form

Zi= vy (B)a, 3)

where \p B)=1+y;B+y, B? +. .. and yweights are calculated by equating the coefficients
of B in the equation ¢ (B) w(B) = 6 (B). For the series to be stationary, it is assumed that y(B)

converges for |B| _s1;' that is, the y weights have the condition ihp il <0, Similarly; Z; can
Jj=0

also be represented as an inverted form of the model using the 7 weights as
n(B)Zi=a (4)

where n (B)=1-m B - n;B%. ... The m weights are analogously obtained by equating
coefficients of B in ¢ (B) = 8 (B) = (B). To satisfy the condition of invertibility it is assumed
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that n(B) converges on or within the unit circle. Alternatively, the m weights are assumed to

satisfy the conditionil'n: jl <. (Box, Jenkins and Reinsel, 1994).
=0

Following Box and Jenkins (1976), the analysis based on these models has been extensively
studied in the literature and for details, Abraham and Ledolter (1983), Chatfield (1989), Kendal
and Ord (1990), Wei (1990), Box et al. (1994), Mills (1994), Brockwell and Davis (1991,
1996) and Liu (2006) are referred to interested researchers and readers.

Box and Jenkins suggested that the principle of parsimony is important in model building; that
is, the number of parameters p, d, and q of the fitted model must be minimum (Box et al.,
1994). The inferential problems considered in the literature are usually identification of the
order p, d, and q in the model, estimation of the time series parameters and error variance,
diagnostic checking of the model, and forecasting of the future values, etc.

In this study, the analysis of stationary and invertible time series: ARMA (p, q) with outliers are
considered with the help of empirical analysis of time series data with outliers.

Let Y, be the observed time series and Z; be the underlying time series which is free of the
impact of outliers. Assume that Z; follows a general ARIMA model in Equation (1). Then the
general outlier model for an observed time series Y, is defined as

=f() +Z ()

where Z; is a regular ARIMA model and outliers are incorporated into f(t). The f(t) can be
denoted by different outliers types.

An additive outlier (AO) model, that is, f (t) = oP{" at time T in ARMA (p, q) (Fox, 1972) is
Y= aP"+Z, (6)

where Y is the observed series, Z, is an unobserved outlier free series as in Equation (2), o is
the outlier parameter -00< @ < 90 and

P" =1,t=T,
=0,t=T,

is the indicator variable representmg the presence or absence of an outlier at time T. The
presence of AOs, is clearly seen in a time sequence plot as AO does not have any carry- over
effect.

An innovational outlier (I0) model at time T, that is, f (t) = © y(B) P, in ARMA (p, Q) is
specified by (Fox 1972; Abraham and Box, 1979)

=0y ®B)P™ +7 )

where, as before, Y, is the observed series, Z; is an unobserved outlier free series as in
Equation (2), @ is the outlier parameter -00< ® < @ and

PpM -1 ¢=7T1
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=0,t=T,

is the indicator variable which represents the presence or absence of an outlier at time T. The

IO affects all observations Yr, Y1+ 1, . . . beyond time T and decays with y weights as it has
carry-over effect.

It is not unusual to come across time series data with more than one outlier. The problem of
handling multiple outliers in time series is more complicated, for the simple reason that the
outliers could be of different types (Barnett and Lewis, 1994).

More generally, an observed time series Y might be affected by outliers of different types at k
points of time Ty, Ty, . . ., T« and we have the following multiple outlier model of the general
form

k :
Yi= 2o, ViB) P + Z 8)
i=1
where k is the total number of outliers present in the series, ®;, j=1,2,..., k are the
corresponding outlier parameters which may not be distinct and
Vi(B) = 1 for an AO,
= y(B) = o) for an 1O,
o(B)

when an outlier type presents at time point Tj, j=1,2,...,k.

Problems of interest associated with these types of outlier models are to be identified from the

standpoints of the timing and the type of outliers and estimation of the magnitude w; of the
outlier effect, so that the analysis of the time series will adjust for these outlier effects.

4. - Likelihood Ratio Criterion for Detection of Outliers in a Time Series .

In practice, the timing of an intervention event may or may not be known. Often in such cases,
when the timing and causes of a series of interventions are known, an appropriate handling can
be carried out using intervention analysis that was proposed by Box and Tiao (1975). In many
situations, the timing of intervention is rarely known beforehand and it has significant
influence on the analysis of time series. It leads to the general time series outlier analysis. The
presence of outliers is often not known at the start of the time series data analysis; additional
procedures for detection of outliers and assessment of their possible impacts are important in
practice. Therefore, they need to be developed.

The well-known procedure for detection of outliers in a time series is the likelihood ratio test,
which was first proposed by Fox (1972) followed by Chang and Tiao (1983), Tiao (1985),
Tsay (1986), Chang, Tiao and Chen (1988) and Chan and Liu (1993).

As stated above, Fox (1972) classified time series outliers as type I (additive outlier) and type
IT (innovational outlier) based on an autoregressive model. The basic idea (in an autoregressive
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=0,t=T,

is the indicator variable which represents the presence or absence of an outlier at time T. The

IO affects all observations Yt, Y1+ 1, . . . beyond time T and decays with y weights as it has
carry-over effect.

It is not unusual to come across time series data with more than one outlier. The problem of
handling multiple outliers in time series is more complicated, for the simple reason that the
outliers could be of different types (Barnett and Lewis, 1994).

More generally, an observed time series Y might be affected by outliers of different types at k
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k ;
Y= Yo, Vi® P + Z @®
J=l

where k is the total number of outliers present in the series, w;, j=1,2,..., k-are the
corresponding outlier parameters which may not be distinct and

ViB) =1 for an AO,
8B)
¢(B)

when an outlier type presents at time point Tj, j=1,2,...,k

= y(B) = foran IO,

Problems of interest associated with these types of outlier models are to be identified from the
standpoints of the timing and the type of outliers and estimation of the magnitude o; of the
outlier effect, so that the analysis of the time series will adjust for these outlier effects.

4. ‘Likelihood Ratio Criterion for Detection of Qutliers in a Time Series

In practice, the timing of an intervention event may or may not be known. Often in such cases,
when the timing and causes of a series of interventions are known, an appropriate handling can
be carried out using intervention analysis that was proposed by Box and Tiao (1975). In many
situations, the timing of intervention is rarely known beforehand and it has significant
influence on the analysis of time series. It leads to the general time series outlier analysis. The
presence of outliers is often not known at the start of the time series data analysis; additional
procedures for detection of outliers and assessment of their possible impacts are important in
practice. Therefore, they need to be developed.

The well-known procedure for detection of outliers in a time series is the likelihood ratio test,
which was first proposed by Fox (1972) followed by Chang and Tiao (1983), Tiao (1985),
Tsay (1986), Chang, Tiao and Chen (1988) and Chan and Liu (1993).

As stated above, Fox (1972) classified time series outliers as type I (additive outlier) and type
II (innovational outlier) based on an autoregressive model. The basic idea (in an autoregressive
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model) is to add a dummy variable for every observation in turn, maximize these likelihoods,
and see whether the maximum of the likelihood ratio statistics thus achieved is significant. Fox
also suggested the use of more practical simplifications of likelihood ratio test, such as
standardized estimated errors in the observations being tested. These were developed by,
among others, Muirhead (1986), Chang, Tiao and Chen (1988) and Tsay (1986), and are also
used as a part of a complete outlier modeling strategy.

The models for additive outliers (AO) and innovational outliers (I0) are as described in
Equations (6) and (7) respectively. These two models can be written in terms of the innovation
sequence ay's as follows:

AO: Y, = e —=a, + coP &)
(B)
) o(B) ™
I0: Y, = ) ( + P, ) (10)

Thus, the AO case may be called a gross error model, since only the level of the t* observation
is affected. On the other hand, an IO represents an extraordinary shock at time point T

influencing Yr, Yr+1, . . . » through the dynamic system described by ¢EE;
Letec=n(B) Yefort=1,2,..., n where n(B) = gEB; We can write Equations (9) and (10),
respectively as
AO: e, =on(BP® +a, an
10: e =oP" +a, (12)

In other words, the information about an IO is contained in the residual er at that particular’
point T, whereas that of an AO is scattered over a string of residuals er, €t+1,...

For n available observations, the AO model (11) can be written as

e, ] K 1 [ay
eT-1 0 aT-y (13)
e . | a
T =W + o
€T+l ! ATy
€T+2 -7 aT+2
[ €n _‘ﬁn-T_ 3n
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Let &, be the least square estimator of @ for the AO model. Because {a;} is white noise, from
the least squares theory, we have

= n=T

=

AO: &, =

n-T
2.
=0
=" 7t (F) ey (14)
where ‘r [Zn J andn F)=(1-m F-mF -...-%ug '™, F is the forward shift
=0

operator such that Fe; = ey The variance of the estimator &, is
| var(®, ) =1’c? (15)
Similarly, letting @, be the least squares estimator of ® for the IO model, we have
I0: &, =e; (16)
and |

var(®,)=02. (17)

Thus, the best estimate of the effect of an IO at time T is the residual ey, whereas the best
estimate of the effect of an AO is a linear combination of er,er+1, . . . and e, with weight
depending on the structure of the time series process. Since 7 < 1, it is easily seen that

var(®, ) < var(®,)= o> and in some cases, var(®, ) can be much smaller than"c_ .

Let Hy denote the null hypothesis that ® = 0 in’‘Equations (9) and (10), H; deﬁote the situation
o # 0 in Equation (9) for AO and H; denotg the situation o = 0 in Equatlon (10) for 10. The
likelihood ratio test statistics for AO and-IO are given by

Hovs H; : ?L]T —-m—A
10,
Hovs Hy :  Jgr =4 18)
’ R )

Under the null hypothesis Hy, the statistics A;t and ?\.ﬂ both have the standard normal
distribution.

The likelihood ratio method further leads to the criteria
AO max | AT |
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t=1.,....n
I0 :  max Az
) .

for testing the possibility of an AO or IO, respectively, at an unknown position in the series Yy,
LI Y ,Yn'

A simple rule was mentioned by Fox (1972) as a possible way to distinguish between AO and
I0. At any suspected point T, the possible outlier is classified as an AO if |7\.1 T| >
|?\.2,T|and1tlsclass1ﬁedasan10 if |7Ln-| < |7Lz"r|

In practice, the ARMA parameters and o} are usually unknown. Estimates of these

parameters, togethér with that of ® under either the AO or the IO case, can be obtained by
‘maximizing the likelihood function of (¢1, . . . , ¢p, 01, . . . , Og, ®, 62) in the same fashion as

that described by Box and Jenkins (1976). Based on these estimates, the likelihood ratios can
be computed accordingly for testing the hypotheses, one against another, in Equation (18).

The iterative procedure for the detection of outliers in a time series at unknown positions is as
follows:

Step 1

Model the series {Y;} by assuming that there is no outlier. From the estimated model, compute
the residuals, that is,

By, =By
6(B)

t
where $(B) = (1 -$,B-...—&>,',Bp)and 8B)=(1-6,B-..—8,B%). Let
6,2 - 1262 |
s T, - t
be the initial estimate of .

Step 2

Calculate A,, and4,, fort=1,2,...,n, using the estimated model. Define

}

fort=1, 2,..., n, where T denotes the time when the maximum occurs. If fLT = Ii.,-r|> 8

hor = maxf, i,

where C is a predetermined posmve constant, then there is the p0331b111ty of an AO at time T
with its effect estimated by & » in Equation (14). The effect of AO can be removed by defining
new residuals

— &, AB)PD fort>T.

o
il
o>
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If Ap = |712,T' > C, then there is the possibility of an IO at time T. The impact of IO is estimated
by @, in Equation (16). Then, the effect can be eliminated by defining a new residual
e =€ —® =0 at time T.

In practice, Chang et. al. (1988) recommended using C = 3 for high sensitivity, C=3.5
for median sensitivity and C = 4 for low sensitivity in the outlier detecting procedure when the

length of the series is less than 200. In either of preceding cases, a new estimate & is
computed from modified residuals.

Step 3

If an IO or an AO is identified in Step 2, recompute im and 712,1‘ based on the same initial

estimates of time series parameters, but using the modified residuals € 's and the estimate G2,
and repeat Step 2.

Step 4

Continue to repeat Steps 2 and 3 until no further outliers can be identified.

Step 5

Suppose that Step 4 terminated and k outliers have been tentatively identified at times T}, T, .
. » and Ty. Treat these time points as known and estimate the outlier parameters
simultaneously using general outlier model of the form

k
Y, =Y o,Vi(BP" + LN

19
2., B k.

which is equivalent to Equatlon (8) where V{(B) =1 for an AO and V, i(B)= ¢$; for an IO at

time T;.

Treating Equation (19) as the suggested model, we start the outlier detection stage again. If no
other outliers are found, we stop. Otherwise, the estimation stage is repeated, with the newly
identified outliers incorporated into the model (19), until no more outliers can be found, and all
of the outlier effects have been simultaneously estimated with the time series parameters. Thus,
we have the following fitted outlier model:

< ; G(B)
Y, = V,(B)P" +
OBy

where &;, $(B)=(1-(B)-..—$,B )and 8(B)=(1-6,B-..—8,B?) are obtained in the
final iteration.

(20)

5. Detection of Qutliers in Wheat Production Series
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The likelihood ratio test is used for the detection of outliers in the "Whezt Production Series (in
thousand metric ton) of. Myanmar from 1950- 51 to 2005-06". The data is plotted in Figure 1.
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Flgure 1: Plot of Wheat Production Series (1950 1951 to 2005-2006)

In Figure 1, the unusual peaks at t = 16, 29, and 34 look like the possible outliers in this series.
But the question is whether all are outliers or not and what are the types of outliers to which
these outliers belong. It may be difficult to get the correct answer by visualization from the
time series sequence plot as in Figure 1 and the detection of outliers is an important issue in

such case.

Firstly, the identification of the time series model is needed for the observed data series. Using
SPSS software, the plots of autocorrelation function (acf) and partial autocorrelation function
(pacf) of the observed series are obtained which show a tail off pattern of acf and a cut off after
lag 1 for pacf, respectively. Hence, the model suggested for this data is AR(1) specified by

(1-¢B)Z=6o+a 1)
where 9 is the overall constant in the model. Based on the tentative model AR(1) without
outlier, fitted model is obtained as

(1-0.938 B)Z;=79.832 + a, (22)

with &2=530.151.

By likelihood ratio test under the AR (1) model, an AQat t = 29 and an IO att=34 are
identified. Thus, the fitted AR(1) model with an AO t=29 and an IO att =34 is givenby

Zi=0,+

1 L = o8 +a, ]+ 0,p@ 23)

The estimates of parameters for model in Equation (23) on the basis of the wheat production
series are presented in the following table.

Table (1)
Estimated Parameters of AR(1) with an AO and an IO Outliers
for Wheat Production Series

Parameter Estimate S. E.
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0o 64.839 26.308
b 0.936 0.035
o 86.220 15.628
O3 -49.744 11.223
ol 287.981 .

Hence, the siniultaneous estimation of the parameters of the model is given by
Z4= 64839+ [86.220P8% +a,|-49.7440,p2  (24)
(26.308) (0.035) (15.628)

0. 936B
(11.223)

with &2 = 287.981, where the values in parentheses below the parameter estimates are the
associated standard errors.

From the above table, it is also noticed that the estimate of error variance o, from model (24)
is smaller in comparison with the estimate obtained on ignoring the outliers from model (22).
The reduction percentage in error variance by model (24) for wheat production series is given
in the following table. | :

Table (2)
The Reduction Percentage in Error Variance for Wheat Production Series
~ Model Estimated Variance | Reduction Percent
AR(1) with 2 outliers (24) - 287.981 - 45.67%
AR(1) with no outlier (22) 530.151 =

From Table (2), it is noticed that the error variance for model (24) is smaller than that for
mode] (22), and the reduction percentage in error variance by model (24) is 45.67% when the
effects of an 1O at t = 34 and an AO at t =29 are taken into account.

For the diagnostic checking, the residuals series of the fitted model with two outliers 1s
examined to check the residuals are white noise or not. Thus, the acf and pacf of the residual
series for the fitted model with outliers are plotted in the following figure.
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Figure 2 The acf and pacf of Residual Series for Model (24)

From Figure 2, the acf and pacf of the residuals series of the fitted model do not form any
pattern, and they are statistically significant since the acf and pacf lie within two standard
deviations for 5% level of significance.

Besides, Box-Ljung Q statistic of the fitted model is 12.407 which is not significant at 5% level
of significance. This means that the fitted model is adequate for the wheat production series.
Based on the results of these residual analyses, the tentative model with an AO at t =29 (1978-
79) and an IO at t = 34 (1983-84) is found to be adequate for the observed time series on wheat
production of Myanmar. '

First, an AO with negative sign at t = 29 is found when the sharp fall of wheat production
occurred in 1978-79. It might be due to the fact that the number of irrigated area for wheat
cultivation decreased relative to the previous years, and the utilization of fertilizer and amount
of pure strain of seeds distributed also declined. Consequently, the wheat production declined
to 41 thousand metric tons in 1978-79.

Second, an IO with positive sign at t = 34 is detected as wheat production increased to 210.2
thousand metric tons in 1983-84. The causes of such increase were increase in the supply of
pure strain of seeds, the utilization of fertilizer and insecticides as wheat was considered as one
of the most important crops. Besides, new pure strain seeds, which became suitable for the
climate of Myanmar, could be produced after doing necessary agricultural research. Then, the
State took necessary measures to supply the pure strain of seeds to the wheat cultivators. And,
it rained enough for the crops in late monsoon days, then the volume of wheat production not
only surpassed the production of previous years but also it exceeded the production. target.
Similarly, production of wheat in 1984-85 onwards continued rising but it dropped
considerably in years to come.

6. Conclusion

Outliers do exist in economic time series data and can at least theoretically have harmful
effects on their analysis. It is difficult to say that how frequently outliers occurred and which is
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the best way to describe them (that is, additive or innovational outlier or others), how serious a
threat they pose in practice, and how to handle them or indeed whether anything at all should
be done about them.

In practice, the presence of outliers is assumed as indicated in the graph at the start of analysis;
additional procedures for detection of outliers and assessment of their possible impacts are
essential. We should stress the importance of adjusting outliers prior to and during the analysis
of time series data. All outliers lead to the worst type of forecasting; consequently, it is
necessary to detect these outliers. Even more emphasis should perhaps be placed on examining
and explaining the possible causes of detected outliers in the observed data.

For detection of outliers, simple statistical tools such as time series plots, frequency
distributions and simple t-tests can be used. These methods are simple and perhaps useful in
some cases, but obviously not sufficient for the wide variety of situations encountered in
empirical time series analysis. It is, therefore, necessary to consider more complicated but
effective methods one of which is likelihood ratio test for the detection of outliers in a time
series. It has become almost a standard method for detection and identification of outliers in
time series. It is already featured in some computer software packages and easy to understand
as well as seem to work reasonably well in most practical situations, especially when used
iteratively.

The effect of the change in the economic time series due to special events should be analyzed
by statistical outlier analysis in order to provide the timings and the causes of occuring these
events which could be useful in future planning. In Myanmar, many economic time series were
affected by events that are planned by decision and policy makers and caused by economic.
changes, weather conditions, out-of-stock situations, and similar events. This study attempts to
detect the timing of the presence of outliers, identifies the type of outliers in wheat porduction
series of Myanmar and also explains the possible causes of occurrence of outliers in the
observed data series. In the detection of outliers, this study focuses only on the applications of
likelihood ratio test. Then, ARIMA models with outliers are constructed and the fitted models
could be useful in decision-making and planning purposes. For detection of outliers in wheat
production series of Myanmar, AR(1) model with an AO outlier at t = 29 and an IO outlier at t
= 34 is obtained.

In this study, emphasis has been put only on two types of outliers, namely, additive outlier
(AO) and innovational outlier (I0) which can occur most often in practical time series. It is
also needed to detect and investigate the effects of other types of outliers using suitable outlier
detection procedures as well as causes of presence of these types of outliers in observed data
series as a further research in this field of study. The detection of outliers can also be extended
to seasonal time series models. The detection of outliers in multivariate time series should be
investigated as a further study. It is also recommended that the outlier detection and model
fitting to practically important sets of time series data should be carried out now and often in
order to have better estimates as well as forecasts.

Appendix
Wheat Production of Myanmar (Thousand Metric Ton)

Years Wheat Production Years Wheat Production
1950-51 9.5 1978-79 41
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1951-52 '10.6 1979-80 89.4
1952-53 104 1980-81 114.9
1953-54 9.6 1981-82 122
1954-55 3.8 1982-83 128
1955-56 10.1 1983-84 210.2
1956-57 10.7 1984-85 203
1957-58 10.9 1985-86 186.9
1958-59 10.7 1986-87 188.7
1959-60 0.l 1987-88 154.4
1960-61 [ ~ 1988-89 128.1
1961-62 20.7 1989-90 122.2
1962-63 3149 1990-91 121.5
1963-64 53.4 1991-92 141.1
1964-65 70.6 1992-93 136.4
1965-66 94.8 1993-94 106.9
1966-67 65.7 1994-95 87.7
1967-68 S5 1995-96 76.7
1968-69 ‘ 254 1996-97 85.4
1969-70 254 1997-98 90.7
1970-71 32.9 1998-99 92
1971-72 26.5 1999-00 1153
1972-73 26.3 2000-01 92.1
1973-74 243 2001-02 94.4
1974-75 62.6 2002-03 105.7
1975-76 35.7 2003-04 122.4
1976-77 | 75.2 2004-05 150
1977-78 922 2005-06 156.2

Source: Report to the People (1964-1965 to 1979-1980); Report to the Phyithu Hluttaw
(1971-1972 to 1988-1989); Review of Financial, Economic and Social Conditions (1989-1990
to 1997-1998); Selected Monthly Economic Indicators (1955-2008)
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